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1. ABSTRACT

Measurements of ship shadow were made from a manned submersible, equipped with a
downwelling PAR irradiance sensor. Theqe measurements were made as transects under the
surface ship during clear sky conditions and three separate profiles (on the shady side, under the
ship and on the sunny side) during overcast conditions. Results from the clear sky measurements
agree with previous numerical simulations, indicating only small errors due to ship shadow. During
overcast conditions, the profiles indicate the shadow effects are detectable to considerable depth,
but not at a distance of one optical depth from the ship rail on the sunny side. These measure-
ments also demonstrate the effectiveness of manned submersibles for optical oceanographic studies.

2. INTRODUCTION & BACKGROUND

Ever since optical data have been acquired in situ from oceanographic research vessels the
problem of avoiding interfering effects of the shadow and reflections from the research platform
has been daunting. As Jerlov has written, "... the meter cannot be lowered more than 5-7m
outboard, and therefore shading due to the ship may influence the results"'. Aas2 adds that "... the
effect of reflected light from the ship is more difficult to estimate." All researchers have agreed
that from theory and experimentation it is true that the effect is much more significant under
overcast skies than under clear sunny conditions.

Early work began to quantify the magnitude of the errors induced by ship shadow in
measurements of irradiance and radiance at sea. Poole 3 estimated shading errors (in downward
radiance measurements) for overcast skies to be of order 10% in the surface waters (< 5 meters).
Jerlovl analyzed the results of Aas2 and concluded that the reduction in downward irradiance due
to ship shadow (measurements made 5 meters abeam of the ship rail, on a ship of length 52
meters) was less than 10% for all depths under clear skies, but as much as 22% (at 20 meters
depth) under overcast skies.

Later experimental studies confirmed the general trends observed by earlier researchers, but
found even larger potential errors due to ship shadow effects. Voss et al.4 measured, among other
parameters, downwelling spectral irradiance at two distances (0 meters and 9 meters) from the ship
rail under overcast and sunny conditions. Again, their results show that in the surface waters there
is less than a 5% reduction (comparing the 0 meters reading to the 9 meters reading) in
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downwelling irradiance, Ed, in the clear sky case (for all wavelengths), but this error was at least
40% under overcast skies. The diffuse attenuation coefficient for downwelling irradiance at 488nm
in the surface waters was approximately 0.06 m'. Smith and Baker5 approached the same problem
in a different manner. In their study the above-water spectral irradiance data were used to develop
a correction to ship shadowing. Important components of their study were the estimation of the
air-sea interface transmittance characteristics, and the determination of the relative components
of direct and diffuse (i.e. sun and sky, respectively) downward irradiance. Their conclusions were
that, uncorrected, measurements of downwelling irradiance just under the sea surface were in error
by "only a few percent" for clear skies, but by as much as 30% for overcast conditions.

Theoretical studies have generally been in agreement with observations, and have provided
some of the insight needed to improve experimental design. Using Monte Carlo simulations
Gordon6 studied the roles of many optical parameters (e.g. solar elevation, solar azimuth, single
scattering albedo, etc.) in affecting the irradiance error, which, for downwelling irradiance is
defined as:

[(Ed,1-Ed)IEd,)

where t and m designate true and measured, respectively. Gordon concluded that with the sun
within 450 of the ship beam, and with measurements made by an irradiance meter some 1.5 meters
off the ship rail on the sun side, typical mid-day irradiance errors induced by ship shadow will be
of order 2-5% for direct sun (i.e. similar to clear conditions) and of order 20% for sky illumination
(i.e. similar to overcast conditions), depending, of course on the beam attenuation coefficient.
Gordon adds that in the case of diffuse illumination error reduction would most adequately be
addressed by floating a small sensor package a "considerable distance" from the ship. Responding
to this suggestion, Waters et al.7 designed and tested an optical free fall instrument for obtaining
standoff vertical profiles of spectral downwelling irradiance. Initial trials with this package, as
corroborated by simultaneous measurements of inherent optical properties indicate its success in
avoiding influences of ship shadow on irradiance measurements near the sea surface. An additional
combined theoretical and experimental study was conducted by Helliwell et al. 8. In this study 1-
dimensional and 3-dimensional finite difference solutions to the radiative transfer equation were
used to model the effect of ship shadow on downwelling and upwelling radiance distributions at
several depths under the sunny side and the shade side of a research vessel. Measurements were
made with the RADS radiance distribution camera, described by Voss9. Qualitative agreement
between the model and the measurements to depths of 55 meters was quite good. The contour
plots of the diffuse attenuation coefficients in Helliwell et al.8 can be used as a prediction of what
distances from the ship are appropriate for sensing irradiance without interference from the ship
shadow.

All of these theoretical and experimental treatments argue for better understanding of the
nature of the ship shadow effects. The use of manned submersibles was identified as a mechanism
for performing the next generation of studies. Manned submersibles have already proven quite
effective in a wide range of biological, geological and biogeochemical studies. Data from a
submersible could serve hydrological optical studies well with continuous, or near-continuous
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transects of irradiance at fixed depths on either side of and within the ship shadow. Since a
manned submersible is a very stable platform, orientation of the irradiance sensor could be assured,
and, of course, by placing the sensor well above the plane of the submersible, influences of the
submersible itself could be minimized. Navigational systems of current manned submersibles lend
themselves to very accurate positioning and orientation relative to the shadowing surface vessel.
For these reasons an experiment was conducted in February, 1991 in waters off the Bahamas, using
the Johnson Sea Link manned submersible, deployed off the R/V Edwin Link of the Harbor
Branch Oceanographic Institution. The intent of this study was to obtain an accurate set of data
describing the 3-dimensional variability of the irradiance distribution underneath and surrounding
the surface research vessel.

3. EXPERIMENTAL SETUP

Geometric relationships between the manned submersible, Johnson Sea Link (JSL) and the
surface vessel, R/V Edwin Link are shown in Figure la. Two dives were conducted in the JSL.
Dive 2900 (21 February 1991, under clear skies) was centered at 26°31.38'N, 78'05.53'W. The
pattern of transects run under the R/V Edwin Link is shown in Figure lb. Dive 2909 (25 February
1991, under overcast skies) was centered at 26'31.57'N, 78'02.96'W and its transect pattern is shown
in Figure 1c.

4 --- - .... ... .-. . ..: : -. -.... S I

• ~SUN •

a b

Figure 1. a) General geometry of measurements; b) transects of dive 2900; c) profiles of dive
2909.

The JSL was equipped with a LI-COR. Model LI-192SA underwater cosine response
quantum sensor. Spectral response for this instrument is shown in Figui. 2.
The sensor was placed aboard the JSL in a location to minimize influences from the submersible,
and to allow vertical orientation. During dive 2900 data were recorded as one minute averages of
readings taken approximately ev•ry tlree seconds. Foi uive 2909 data were obtained as
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approximately one-minute averages every 5
meters of depth below approximately 20 me-
ters, with several measurements closer to the
surface for the two casts on either side of the I ,
ship. In addition, an intercalibrated, gimbal-
mounted 5-channel irradiance collector was u,.,, ,
placed unobstructed on the 02 deck of the R/V 1 - -ENSOP

Edwin Link, but this sensor malfunctioned • --- -

prior to and during Dive 2909. Positioning of
the surface ship and the JSL was monitored Q

with 0.1 meter resolution using the Track-
Point. acoustic navigation system. -

Additional optical data were collected at
other times during this research cruise. Dr. o, , , 1 ®
Jim Case obtained profiles of beam attenuation O , , o - ,,

(660nm) using the HIDEX bathyphotometer.
Measurements of ship hull reflectance were
obtained at three wavelengths using a Gardner- Figure 2.Typical spectral response of LI-COR
/Neotec Colorgard II. reflectometer. Quantum sensor and the ideal quantum response.

4. RESULTS

The results of dive 2900 are shown in Figure 3.
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Figure 3.Relative position of the submersible and irradiance measurements during dive 2900.

All of the position-related data and the downwelling irradiance are shown in this composite
figure. By way of reference to Figure la, the solar zenith angle. 0. varied from 360 to W1°, over the
3.5 hour duration of t%,. dive (start time was 1211 local), and the relative azimuth, e, was
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approximately 830. This value of o is rather large, but given the large zenith angle, this ensured
that the starboard side of the ship was fully in sun, and the port side shaded. Consequently,
negative values of X correspond to the port, or shade side of the ship. Transects are shown as col-
lected at 30 meters and 20 meters depth. Beam transects are shown by highly sloped X values;
major axis transects are indicated by highly sloped Y values.

An arbitrary discriminator of 150 micromoles irradiance was used to define the spatial
distribution of light levels for dive 2900. Figure 4a shows the spatial distribution of all points where
the irradiance value was less than this value, regardless of depth. Figures 4b and 4c show the same
data as Figure 4a, but for the depths of 20 meters and 30 meters, respectively.

.Did&m Cmbra) Y-Dii * (m rs) Y.Diihwe (m tbro)

200

770

.0 4 M M S -i :5 -20 .13 l -1 .5 0 .- . 25.2-45.10 .5 - 25 ... -.. *10 . ' 4 s

X-Disbige (Mbkm4 X-Djitsug (uabrs) X-Di~mm (umbNg

a b c
Figure 4. Relative positions of irradiance readings: a) less than 150 micromoles at both depths;

b) less than 150 micromoles at 20 meters; c) less than 117 micromoles at 30 meters.

In the case of the 30 meters depth, the irradiance cutoff was 117 micromoles, since that
corresponds to approximately the same light value as 150 micromoles at 20 meters for the
downwelling diffuse attenuation coefficient as measured during the submersible dive.

Dive 2909 was comprised of three vertical profiles, each separated some 30 meters, and
centered on the center of the R/V Edwin Link as shown in Figure Ic. The dive was begun on the
shady side (-X) at 1054 local time, and ended at 1234 local. While skies were virtually completely
overcast, the solar zenith was recorded as 460 at the start and 36' at the finish. Figure 5 shows the
log-linear plots of irradiance versus depth for each of the three profiles.

The profile directly under the surface ship was limited to a minimum depth of 15 meters.
Some variation in the vertical profiles may be attributed to variations in Ed(O'), the downwelling
irradiance just above the sea surface. Since the deck irradiance meter malfunctioned during this
dive it is not possible to correct the values in Figure 5 for atmospheric variations.
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Figure 5. Profiles of irradiance 30 meters from the ship on the shady side (SHADE), under the
ship (SHIP) and 30 meters from the ship on the sunny side (SUN) during dive 2909.

5. DISCUSSION

In the case of dive 2900 it is clear from Figures 4a,b and c, that the relatively low values of
irradiance were detected in the quadrants identified by -X and + /- Y, as expected with the sun on
the +X side. Figures 4b and 4c suggest that the maximum shadow effect would show up in the
beam transects, rather than the axis transects. When equation (1) is used to quantify the shadow
effect in terms of errors in Ed, the difference between the beam and axis transects (Figures 6 & 7)
is obvious.

For the purposes of these two figures, the term Etr,, was estimated as the mean value of all
measurements greater than 150 micromoles at 20 meters depth and greater than 117 micromoles
at 30 meters depth.

Figure 6 shows the error in Ed at both depths in the axis transect (the ordinate of the figure
has been chosen to allow comparison with the same ordinate in Figure 7). Typically, the error at
20 meters (60 feet) was less than 30%, with some change from positive to negative, going from
astern of the surface ship to forward of the surface ship. This is consistent with a slightly brighter
irradiance field in the forward region. This forward brightening is not as evident in the deeper axis
transect (Figure 6b), but, again, the error is typically less than 20%. Trends of shadow effects are
difficult to discern from the axis transect.

Figure 7, plotted on the same axis for errors, as Figure 6, shows the extreme signal change
associated with the shadow of the ship at both depths. In the case of the 20 meter transect the
error increases from roughly 20% to over 400% within 30 meters of the center of the ship. At the

SPIE Vol. 1750 Ocean Optics XI (1992) / 377



Error in Ed Error in Ed
Dive 2900 60 Foot depth Dive 2900 100 Foot depth

4M0 -400- - _ _ _ _

30 •% . 3- , - : -. ,00%- -

2 M . .: 200:%.: ::.::_::.

'00% - - , : :.- F00% .

0%100% A

0%---0%-
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Y(metes) a Y(mters) b
Figure 6. Errors in downwelling irradiance on transect taken under ship length (axis) at: a) 20
meters and; b) 30 meters on dive 2900.

30 meter depth a similar pattern is detected, but the error is only about 180% (still quite large
compared with the axis transect).

At both depths the shadow is clearly skewed to the -X side, as one should expect with the
sun located on the + X side. Also shown in Figure 7a, and plotted in enhanced scale in Figure 8,
are the results of the simulations done by Gordon 6 at 20 meters depth, for a different shadowing
geometry. Nonetheless, Figure 8 shows that in the range of 5 to 15 meters from the ship rail, the
measured errors are consistent with errors one would predict for a clear sky (i.e. predominantly sun
illumination). Gordon's predictions are shown for two different values of the beam attenuation
coefficient. Figure 9 shows that the results obtained here are closest to predictions for waters
having a beam attenuation coefficient, cpar of 0.3 m1 . Measurements of cpar were not made in this
study, but values of order 0.3 m1 are not inconsistent with the water quality of this region
(measurements of c at 660nm taken at this station were typically approximately 0.4m-1).

Concluding, for the clear sky case, the data show that the most significant effect of ship
shadow is seen in the transect performed along the beam of the ship, when the ship bearing was
such that the sun was abeam. At a depth of 20 meters (i.e. approximately one optical depth), the
ship shadow was still quite evident at distances of 35 meters on the shady side of the ship. Errors
on the sunny side were consistent with predictions from Monte Carlo simulations.

The data for the overcast profiles, as shown in Figure 5 demonstrate, as predicted
qualitatively, that the shadow effect is much more extensive in this case. Several features in Figure
5 are notable. Measurements of irradiance were lowest directly under the ship. The shady side
and sunny side had nearly equal irradiance values near the surface. At a depth between 40 and
65 meters there is a "crossover" point at which the shade side irradiance values become the lowest.
Below this crossover point the profiles on the sunny side and directly under the ship are nearly
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Error in Ed Error in Ed
Dive 2900 60 Foot depth Dive '000 100 Foot depth
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Figure 7. Error in irradiance measured during transect taken under beam of ship at: a) 20 meters
and; b) 30 meters depth in dive 2900. Also shown are the errors predicted from Gordon6 .

Error in Ed
Dive 2900 60 Foot depth

30%

.A.

0%/
0 10 20 30

X (meters)

- Data "--0.1 SKY -W 0.3 SKY "0.1 SUN "O.3 SUN

Figure 8. Same as Figure 7a on expanded scale.

equal. This pattern is as one would expect for a shadow that is projected under the ship at some
angle consistent with the sun location. The shady side profile should be essentially unaffected until
some depth where the vertical profile intercepts the top edge of the shadow. By the same token,
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the vertical profile directly under the ship should eventually be outside of the shadow. These
results suggest that the ship shadow appears at a depth of approximately 40 meters some 30 meters
abeam of the ship on the side opposite the sun. The results also suggest that the shadow
disappears from directly under the ship at a depth of approximately 65 meters. For the solar zenith
angle of 460, and a ship beam of approximately 8 m, Snell's law suggests that the shadow at 30
meters abeam of the ship should first appear at 40 meters depth. These results are entirely con-
sistent with the geometric prediction of ship shadow. Similar analysis of the disappearance of the
shadow under the ship suggests a dispersion of the shadow by approximately 26' (i.e. the shadow
is not collimated, but actually subtends an angle of 260).

Figure 9 shows the discrete and integrated values for the diffuse attenuation coefficient, Kd,
defined as:

lnE4(z2)-Ez)
Kd(discrete)-

z.1 -7z2

Kd~ntgrate) =lnEd(Z2 ) -lflEd(Zref)(2
__________(2)

K /(integrated) =
z,ef _z2

rnd reference values for the integrated diffuse attenuation coefficient were I mn, 15 m, and I m,
respectively for the shade, ship and sun profiles.

Discrete Kd Profiles Integrated Kl Protiles
Dive 2909 (Overcast) Dive 2909 (Overcast)

K. (11m) K. (1/m)
0.1 0.1

0.0,6 -o .o,6

.0.02
0 20 40 60 80 100 0 20 40 60 80 100

Depth (m) Depth (m)

Profile Profile

K shade (ave) -*- K ship (ave) *K am (ave) a K dhade (0-Z) + K ship (0.Z) K sun (0-Z) b
Figure 9. Profiles of the diffuse irradiance attenuation coefficient during dive 2909: a) three point
running average of discrete 5 meter values; b) integrated (relative to 1, 15, and 1 meter for
shade, ship and sun, respectively) values.

In the case of the discrete coefficients (Figure 9a) a boxcar average of three depths was used
to smooth the profiles. The results, shown in Figure 9a show considerable variability in Kd. The
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integrated values in Figure 9b serve better to highlight the features of the shadow. For example,
neglecting the two shallowest values in the sun profile, the integrated Kd stays within 0.01 m- of
0.055 m 1 . On the other hand, the overall change in both the ship and shade profiles is of order
0.03 m-'. In addition, the 65 meter depth at which the shadow disappears under the ship is quite
evident as a sudden drop in Kd; the appearance of the shadow at about 40 meters in the shade
profile is not so evident, but may be manifested in the slightly increased slope in the KY profile at
that depth. A peculiarity is the fact that the sunny and shady profiles reach the same values of Kd
at about 70 meters, but the ship profile Kd does not appear to have reached an asymptote, even
at 100 meters. This may be a manifestation of the use of a shadowed irradiance as a reference in
the calculation of the integrated irradiance.

Ratios of the discrete values of Kd are shown in Figures 10a and b. In Figure 10a values
greater than 1.0 imply enhanced attenuation compared with the control (i.e. sun side) profile. The
Figure shows that the shade profile is similar to the sun profile near the surface and at the bottom
of the cast. By comparison, the profile under the ship doesnot begin to come to full agreement (i.e.
KdS within 20%) with the sunny side profile until a depth of approximately 80 meters. The drastic
decrease in the ship:sun ratio at 75 meters ar~uably corresponds with the bottom of the shadow.
This is also shown in Figure 10b, where the shade and ship profiles are compared. In essence this
Figure shows the full three dimensional character of the ship shadow, with its appearance at 45
meters, its disappearance under the ship at about 75 meters, and its complete disappearance, even
from the shady side profile between 95 and 100 meters.

Kd ratios Kd ratios
Dive 2909 (Overcast) Dive 2909 ( Overcast)

1.000 ;_ _ _ _ _ _ ;; ýzz;M 1 . . . .

100 '- !'• ! .$gas... .. ... ... a I ...- III: --

I : : . . . . . . . .: •. . . . .. . . . . . . .. . .

O . ." ....... ... 01 - -. . . . . .

0.10.
0 20 40 60 80 100 20 40 so 80 100

Depth (M) Depth (m)

Profile Profile

*K shade: K sun +0"Kd ship: K sun a K shade : K ship b

Figure 10. Ratios of the discrete values of Kd.

These results demonstrate that the ship shadow is a noticeably large effect, especially under
overcast skies. It also demonstrates that the shadow under such conditions behaves not as a
collimated pencil of reduced illumination, but rather as a ýpreading center of darkness: a function

.P'IE Vol. 175 0 (•t'an )pfla ý XI (1 91)2 / 181



of the aiffuse irradiance from the sky. The eftect is still letectable to depths of order four optical

depths at distances of approximately one optical depth from the ship on the shady side.

6. CONCLUSIONS

Ship shadow cannot be avoided from large surface vessels, bat theýe measurements have
provided the first nearly continuous set of transects under the vessel to define the shape and extent
of the shadow. Results under sunny conditions are consistent with numerical models, suggesting
errors of order 5% within 10 meters of the ship at 20 meters depth, for waters with an optical
depth of approximately 20 meters at the surface. Under overcast conditions, the ship shadow was
not evident at a distance of 1½2 optical lengths from the ship on the sunny kde, but at the same
Jistance on the shady side the shadow was quite evident between 2 and 4 optical depths. Directly
under the ship at 1 optical depth the shadow amounted to decrease in downwelling irradiance of
approximately 80%.

These results would benefit from further theoretical comparisons. The data of ship
reflectance, in conjunction with the geometric considerations of the experimental design could be
used to test existing models of ship shadow.

This research also demonstrated very effectively the power of manned submersibles for
optical research. The ease of positioning, navigatio;. tability and measurement all proved essential
to obtaining optical measurements of reasonably high accuracy and repeatability.
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